РефератыПромышленность, производствоКиКислородно-водородный ЖРД НМ60

Кислородно-водородный ЖРД НМ60


Московский Государственный Технический Университет им. Н.Э. Баумана


Реферат

по КСМУ


на тему:


“Кислородно-водородный ЖРД НМ60”


Преподаватель: Медведев В.Е.


Студент : Мельников Сергей


Группа : М1-52


— 1999 г. —


Исследования, проводимые в Европе в области ракет-носителей, показывают необходимость разработки кислородно-водородного двигателя большой тяги для эксплуатации в 90-годы.


Для выявления потенциальных технических проблем, начиная с 1978 года проводились предварительные исследования кислородно-водородного ЖРД с тягой 500 кН. В 1980 году было принято решение о разработке семейства РН Ариан-5 (рис.1), на которой предполагается использование разгонных блоков первой ступени РН Ариан-4 и нового кислородно-водородного блока Н60 (рис.2) на второй ступени. На рис.1 под каждой модификацией РН указана ее грузоподъемность (кг) и соответствующая орбита: LEO – низкая околоземная; GTO – переходная к стационарной.


Предварительные исследования по двигателю блока были начаты в 1981 году. Разработку планировалось начать в 1984 году, а закончить в 1991 году с тем, чтобы первый пуск Ариан-5 осуществить в 1993-1994 году.


Ниже рассматриваются основные результаты предварительных исследований по созданию ЖРД НМ60.


ЖРД должен удовлетворять следующим основным требованиям:


а) удельный импульс в вакууме - 4346 Нсек/кг;


б) номинальная тяга в вакууме – 800 кН; с возможностью дросселирования в полете до 600 кН;


в) перспективный уровень тяги в вакууме – 1300 кН. Данная тяга необходима для использования ЖРД на первой ступени перспективных РН и достигается увеличением давления в камере сгорания. Таким образом, первоначальная конфигурация с тягой 800 кН разрабатывается в условиях минимального технического риска;


г) длина и максимальный диаметр не более 4,0 и 2,4 м, соответственно, что обеспечивает безопасное разделение ступеней в полете. В перспективе предполагается использовать выдвигаемый насадок сопла;


д) критическим на входе в насос окислителя принято избыточное давление 1,5 х 105
Па и в насос горючего 0,5 х 105
Па, что позволяет обойтись без преднасосов;


е) ЖРД должен допускать многократное использование.


В процессе предварительных исследований рассматривались три схемы двигателя:


1) ЖРД с использованием на турбине пара водорода, полученного в тракте охлаждения, принципиальная схема которого представлена на рис.3,а; 2) ЖРД с дожиганием генераторного газа (рис.3в); 3) ЖРД без дожигания генераторного газа (рис.3б), где 1 – насос горючего; 2 – насос окислителя; 3 – турбина горючего; 4 – парообразный водород; 5 – турбина насоса окислителя; 6 – газогенератор.


Принципиальными преимуществами ЖРД первой из рассмотренных схем (рис.3,а) являются: простота, предельно низкая стоимость производства и относительной низкий уровень давления в насосах, необходимый для заданного давления в камере сгорания. Тем не менее, предварительные исследования показывают, что тепловой энергии, снятой со всей поверхности камеры сгорания, включая сопло, не достаточно для подачи топлива в камеру сгорания с давлением 100 х 105
Па.


На рис.3,в представлена схема ЖРД с дожиганием генераторного газа. Камера сгорания в этом случае питается двумя отдельными турбонасосами, работающими на газе, полученном в предкамере, объединенной с турбонасосом жидкого водорода. Для данной схемы ЖРД рассматривались конфигурации турбонасосов, подобные ЖРД ТКА Space Shuttle, но без преднасосов, что объясняется требованиями к двигателю. Камера сгорая имеет регенеративное охлаждение, для чего используется 20% топлива, а 6% его идет на охлаждение сопла с последующим сбросом горячего пара.


На рис.4 приведен общий в ид ЖРД НМ60 с дожиганием генераторного газа (А) и без дожигания (В).


На рис.5 представлена принципиальная схема ЖРД без дожигания генераторного газа, где 1 – наддув окислителя; 2 – жидкий кислород; 3 – турбонасос окислителя; 4 – магистраль гелия; 5 – система продувки магистрали жидкого кислорода; 6 – система продувки магистрали жидкого водорода; 7 – жидкий водород; 8 – турбонасос горючего; 9 – наддув бака горючего; 10 – клапан регулирования соотношения компонентов; 11 – пиротехническая система запуска и раскручивания турбины; 12 – газогенератор; 13 – клапан продувки магистрали жидкого кислорода; 14 – клапан продувки магистрали жидкого водорода; 15 – система запуска; 16 – клапаны управления впрыском компонентов в газогенератор; 17 – главный клапан окислителя; 18 – главный клапан горючего; 19 – сопло, охлаждаемое жидким водородом с последующим его сбросом. Конструкция и технология изготовления камеры сгорания данной схемы, как и схемы с дожиганием генераторного газа, аналогичны маршевому двигателю ТКА Space Shuttle (SSME). Основные характеристики двух анализируемых схем ЖРД приведены в табл.1, где также для сравнения даны характеристики маршевого ЖРД ТКА Space Shuttle (SSME). Можно видеть, что для обеих схем уровни давления ниже, чем у SSME.


Таблица 1. Сравнение вариантов ЖРД НМ60 и ЖРД SSME
























































НМ 60 без дожигания


НМ 60 с дожиганием


SSME


Тяга в вакууме, кН


800


1300


800


1300


2092(100%)


Тяга на уровне моря, кН


624


1054


654


1104


1669


Соотношение компонентов


5,12


5,12


5,58


5,58


6.0


Камера сгорания:


Давление в камере сгорания х 105
Па


Отношение площадей


100


103,7


160


103,7


125


124,4


203


124,4


205


77.5


Газогенератор:



Давление


х 105
Па



Соотношение компонентов


50,6


0,9


115,6


0,9


194


0,68


355


0,9


356


0,81


Турбонасосы (Н2ж
/О2ж
):



Давление на выходе х 105
Па


Скорость вращения, об/мин


143/122


30000/


11700


243/218


40500/


16140


225/153


(257)


25000/


21900


415/248


(486)


35000/


31100


413/296


(480)*




34700/


27500


Мощность турбины, мВт


7,6/2,0


21,2/5,6


10,8/2,8


32,4/8,6


45,5/18,6




*
- Давление на выходе второй ступени насоса окислителя.


На рис.6 приводятся характеристики двух схем ЖРД в диапазоне от 900 кН (6) до 1300 кН, где по оси ординат отложен удельный импульс [х 9.81 Нсек/кг], по оси абсцисс – давление в камере сгорания [x 105
Па], 1 – теоретический удельный импульс; 2 – двигатель с оптимальной степенью расширения (отношение площадей среза и критической части) с дожиганием генераторного газа; 3 – двигатель с дожиганием и с фиксированной степенью расширения; 4 – двигатель с оптимальной степенью расширения без дожигания; 5 – двигатель без дожигания с фиксированной степенью расширения; 6 – номинальная тяга; 7 – максимальная тяга.


Уменьшение удельного импульса для двигателя без дожигания генераторного база объясняется увеличением необходимого количества основных компонентов топлива для газогенератора. Обе схемы двигателя оптимизированы при тяге равной 800 кН.


Для двигателя без дожигания разработка, включая создание стендов, потребует 7,5 лет и 8,75 лет для двигателя с дожиганием. Кроме того, ЖРД с дожиганием для уровня тяги 800 кН имеет на 25% большую стоимость разработки и на 20) большую стоимость изготовления. Имея ввиду степень технического риска и стоимостные характеристики, для ЖРД НМ60 была выбрана схема без дожигания генераторного газа. В результате предварительных исследований были сформулированы новые требования:


1) номинальная тяга в вакууме – 900 кН;


2) ЖРД должен дополнительно обеспечивать следующие функции:


а) управление по каналам тангажа и рысканья, используя карданов подвес;


б) наддув топливных баков основными компонентами;


в) обеспечение расхода 1 50кг/сек для управления по крену;


3) тяга и соотношение компонентов должны удовлетворять проектным и эксплуатационным органичениям, представленным на рис.7, где по оси ординат отложена тяга (кН), по оси абсцисс – соотношение компонентов; 1 – проектные ограничения; 2 – ограничения квалификационных испытаний; 3 – эксплуатационные ограничения; 4 – номинальные условия;


4) при выборе проектные решений предпочтение должно отдаваться вариантам с минимальной стоимостью производства;


5) обслуживание ЖРД должно предполагать использование его на многоразовых РН;


6) двигатель должен использоваться для пилотируемых полетов с минимальной модификацией.


Старт турбин и воспламенение в газогенераторе и камере сгорания осуществляется пиротехнической системой, аналогичной ЖРД НМ7


Ариан-I. Соотношение компонентов регулируется клапаном, управляющим подачей газа на турбину окислителя. Тяга ЖРД и соотношение компонентов в газогенераторе регулируется клапаном, управляющим подачей компонентов в газогенератор. Проверки и контроль работы осуществляется ЭВМ двигателя и топливных баков. Основные характеристики двигателя даны в табл.2.


Турбонасос окислителя (рис.8) состоит из осевого преднасоса, одноступенчатого центробежного насоса и реактивной турбины. Преднасос и крыльчатка центробежного насоса и реактивной турбины. Преднасос и крыльчатка центробежного насоса выполнены из алюминиевого сплава, турбина из сплава INCO 718.


Таблица 2. Характеристики ЖРД НМ60


































































НМ 60


SSME


Тяга в вакууме, кН


900


2090


Тяга на уровне моря, кН


715


1700


Удельный импульс в вакууме, Нс/кг


4364


4462


Удельный импульс на уровне моря, Нс/кг


3423


3559


Соотношение компонентов


5,1


6,0


Давление в камере сгорания, х 105
Па


100


207


Отношение площадей


110,5


77,5


Суммарный массовый расход, кг/с


206


468


Массовый расход газогенератора, кг/с


7,06


248


Расход сбрасываемого охладителя (Н2
), кг/с


1,93


-


Давление на выходе из насоса окислителя, х 105
Па


125,7


319(528)


Длина, м


4,0


4,24


Диаметр среза сопла, м


2,52


2,39


Время работы двигателя, с


291


480


Масса, кг


1300


3002



Подшипники насоса смазываются жидким кислородом, а подшипники турбины – жидким водородом. Герметизация достигается динамическими уплотнителями типа плавающих колец и наддувом гелием. Дистанционно управляемый уплотнитель служит для предупреждения просачивания жидкого водорода в процессе захолаживания перед стартом. Осевые нагрузки компенсируются регулированием потока жидкого кислорода к задней части крыльчатки. Основные характеристики турбонасоса кислорода даны в таблице 3.


Турбонасос водорода (рис.9) состоит из осевого преднасоса,


двухступенчатого центробежного насоса и двухступенчатой турбины. Подшипники вала расположены вне секций насоса и турбины, для обеспечения приемлемой величины DN (диаметр х скорость вращения). Все подшипники смазываются жидким водородом. Система компенсации осевых нагрузок объединена со второй крыльчаткой центробежного насоса. Преднасос выполнен из алюминиевого сплава, крыльчатки из титанового сплава ТА5Е-ЕLI, турбина и вал из INCO 718. Характеристики насоса жидкого водорода приведены в табл.3.


Таблица 3. Характеристики турбонасосов


































Окислителя (02ж
)


Горючего (Н2ж
)


Частота вращения, мин-1


14500


37900


Массовый расход, кг/с


173,4


34,07


Давление на выходе, х 105
Па


125

,7


150,5


Мощность на валу, кВт


2331


8680


Критическое значение избыточного давления, х 105
Па


1,5


0,42


Насос:


диаметр, мм


удельная скорость


КПД


205


0,545 (1490)


0,79


205


0,534 (1460)


0,77


Турбина:



диаметр, мм


отношение давлений


КПД


230


17


0,29


201


20,5


0,50



На рис.10 дан общий вид камеры сгорания (КС) ЖРД НМ60, где 1 – карданов подвес; 2 – воспламенитель; 3 – форсуночная головка; 4 – камера сгорания; 5 – основной сопловой блок; 6 – сопло большой степени расширения; 7 – каналы сброса охладителя сопла расширения.


На рис.11 приводится удельный импульс КС (ось ординат) (х 9,81 нсек/кг), по оси абсцисс отложена степень расширения сопла. Точки на графике соответствуют характеристикам кислородно-водородных ЖРД , где 1 – ЖРД J2S; 2 – ЖРД RL 10; 3 – ЖРД SSME; 4 – ЖРД НМ7А; 5 – ЖРД НМ7В; 6 – ЖРД НМ60. Характеристики КС данных ЖРД приведены также в табл.4.


На рис.12 представлена конструкция форсуночной головки, где 1 – подача жидкого кислорода; 2 – канал подачи жидкого кислорода; 3 – подача газообразного водорода; 4 – пористая пластина; 5 – форсунки;


Таблица 4.


























































J2S


RL10


SSME


HM7A


HM7B


HM60


Тяга, кН


1060


69


2090


60


60


860


Давление в камере сгорания, х 105
Па


54


27


205


30


35


100


Соотношение компонентов


5,5


5,0


6


5


5,3


5,1


Степень расширения сопла


27,5


57


77,5


62


82


110,5


Теоретический удельный импульс, Нсек/кг


4395


4529


4571


4542


4578


4501


Удельный импульс камеры сгорания, Нсек/кг


4209


4364


4464


4363


4398


4439



6 – перегородки гашения высокочастотных колебаний. Форсуночная головка содержит 516 форсунок, собранных на пористой плате, которая охлаждается выпотеванием водорода. Сравнение с другими криогенными форсуночными головками КС дано в табл.5. Перегородки гашения высокочастотных колебаний в КС образованы удлиненными форсунками. Конструкция камеры сгорания ЖРД НМ:) представлена на рис.13, где 1 - полости, предназначенные для повышения устойчивости горения; 2 – выходной трубопровод водорода; 3 – внутренняя стенка КС; 4 – никелевая оболочка КС; 5 – выходной трубопровод водорода; 6 – подача жидкого водорода. КС содержит сужающуюся часть (отношение площадей равно 5,8) регенеративно охлаждаемую водородом. Внутренняя часть КС, выполненная из медного сплава, имеет каналы охлаждения, которые закрыты никелевой оболочной. Трубопроводы выполнены из сплава INCONEL и сварены с никелевым корпусом. Основные характеристики КС даны в табл.6 в сравнении с другими криогенными КС.


Таблица 5. Характеристики форсуночной головки и камеры сгорания


























J2S


RL10


SSME


HM7


MBB


HM60


Форсуночная головка:



Полный массовый расход, кг/с


Диаметр камеры, мм


Число форсунок


Расход через форсунку, г/с


Температура водорода,


К


КПД


242


470


614


375


105


0,98


18,5


262


216


85,6


180


0,985


469


450


600


782


850


0,99


13,9


180


90


70,7


136


0,986


45


182


90


470


190


0,98


195,8


415


516


380


95


0,989


Камера сгорания:


Внутренний диаметр, мм


Характерная длина, м


Отношение сжатия


Максимальная температура охладителя, К


Минимальное давление охладителя, х 105
Па


Максимальная


Температура стенки, К


Максимальный удельный теплопоток, Вт/см2


Давление, х 105
Па


470


0,62


1,58


60


54


262


0,98


2,95


150


27


450


0,8


2,96


254


98


740


12800


205


180


0,7


2,78


100


5,7


625


2900


35


182


2,3


6,95


140


100


690


16800


280


415


0,85


2,99


61


23,3


600


6400


100



Конструкция газогенератора (ГГ) представлена на рис.14, где 1 – подача жидкого кислорода; 2 – подача жидкого водорода; 3 – штуцеры датчиков температуры и давления. Давление в ГГ составляет 77 х 105
Па, температура – 910 К, соотношение компонентов – 0,9, массовый расход – 7,08 кг/сек.


Форсуночная головка ГГ имеет 120 форсунок. Воспламенение осуществляется пиротехническим воспламенителем, расположенным в центре головки. ГГ охлаждается жидким водородом, проходящим между стенками, и впрыскиваемым затем в ГГ. Для уменьшения нестабильности горения рядом с распылительной головкой имеются акустические полости.


Клапаны управления и рулевые машинки имеют гидравлический привод. Гидравлический насос смонтирован на оси трубонасоса окислителя. Остальные клапаны работают на гелии под давлением 23 х 105
Па.


Сравнение двигателя НМ60 с другими кислородно-водородными ЖРД дается в таблице 6.


Таблица 6.






















SSME


НМ7А


НМ7В


LE-5


НМ60


J2


J2S


RL6-10 AЗ-3


Тяга в вакууме, кН


Удельный импульс, Нс/кг


Соотноше-ние компо- нентов


Давление в камере сгорания, х 105
Па


Отношение площадей


Массовый расход, кг/с


Длина, м


Диаметр, м


Время работы


Сухая масса, кг


Начало разработки


Начало эксплуата-ции


Разгонный блок, на котором двигатель использу-ется


2090


4464


6,0


207


77,5


468


4,24


2,39


480


3000


1972


1981


Space


Shu-


ttle


61.6


4338,6


4,43


30


62,5


14,2


1,71


0,938


563


149


1973


1979


Н8


62,7


4372,9


4,80


35


82,5


14,4


1,91


0,984


731


155


1980


1983


Н10


100


4334,7


5,5


35


140


23,1


2,7


1,65


370


230


1977


1984


Н1, втор.


ступ.


900


4364


5,1


100


110,5


196,7


4,0


2,52


291


1300


1984


1992


Н60


1044


4168


5,5


53,6


27,5


250


3,38


1,98


470


1542


1960


1966


SII-


SIVB


1180


4266


5,5


86


40


277


3,38


1,98


-


1556


-


-


67


4354


5,0


27


57


15,8


1,78


1,00


450


132


1958


1963


Centaur


SIV



Список литературы:

1. Астронавтика и ракетодинамика, выпуск 18 за 1985 год


2. Астронавтика и ракетодинамика, выпуск 25 за 1986 год

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Кислородно-водородный ЖРД НМ60

Слов:3318
Символов:39859
Размер:77.85 Кб.