РефератыФизикаЕдЕдиная геометрическая теория классических полей

Единая геометрическая теория классических полей










. .


(dimstein@list.ru)








, .


, 2007 .





.


- ,



- .
-


! !



! ! .
"


! ! ,


# $$#


!.
%


& ,


! ,
! & .



1.


!


" # # . $ # -


, – # .


% , # # & & –


’ . ( ( # &# & & ) # . )


# , ’ # .


& # #


, ’ # &. * ’


’ # # ,


- ,


. *


& #&# # # & & –


& & – # !" # "


(# ) . +# # #


& #, #


’ # # # .


( #


(’ # - , # ). ( & # & #


# & & – ’ . ,# , & , ’ # #. ) # , #


’ ,


# #.


* # #


( ! ( ’ # ), #


’ . $ ’


# & #


.


2.



# &#


( ! , & ’ . )


– - -%


"& - [14]. * ’


&# # # & & & & , # &:


# #, # # ( , #).


, - -%


, 24 .

















































# # &#


, # # . * # #


& . % ( ! #


- (


).


"


. # ,


#


, ’ ,


(−,+,+,+).


, # #


% # & !


# .


# #


A) * - ’


.


B) / # -


’ # .


#


C) * # -


# #.


#, #


* A ’


-


, &


, B


# ’ . )


, $


( ! ,


!



# , - -% . ( #" ,


# ’ . * . # # ,


# .


. 0 - ,


’ , , & , # # #


(Ωα⋅µν=Ωα⋅[µν]):


(1) Ωα

µν=∆α
µ
ν−∆α
ν
µ

# ∆α
µ
ν – . * ’ . .


∆α
µ
ν # :


(2)


# K
– , # #


(K
α
µν= K
[
αµ]
ν), Γµ
α
ν
– % ( , . 1-3).


$ # #


" $. # & ( ) ’ ( ’ # ) #:


(3) dds
2x
2µ µ dxds
α dxds
β= 0


+∆(αβ)


d
2x
µ


(4) ds
2 +Γαµβ dxds
α dxds
β= 0


(3) #, (4) ’ .


. $ (3) (4) # #, #,


# :


(5) ∆µ(αβ) =Γαµβ


$ (2) ’ # !:


(6) ∆µ
[
αβ] = K
µ

αβ


, # #


#. , # (K
α
µν= K
[
αµν]
). . (1) (6) ’


!


(7)





























, #,


(Ωαµν=Ω[αµν] ). 1


,


$ #


.


% , #


(7)


.



* ’ .




3.
!" " !"# !-
" $ % ! && #


, & -


- -% , #, ( ),


’ #, ,


# .


1) . ( # -


# :


(8) ds
2
= g
µν
dx
µ
dx
ν


g
µ
ν # ∇α
g
µ
ν= 0,


# ∇α
– # # x
α
( ,


. 4-5).


2) . .
0 ,


, ",


# & . ,


A
, # # (2)


#:


(9) ∆α
µ
ν=Γµ
α
ν
+ iA
α

µν

# A
α
µν=−A
µ
αν=−A
α
νµ=−A
ν
µα= A
[
αµν]
. . % #


:


(10)


$ # A


# #:


(11) A
αµν=−εαµνσA
σ


# A
µ
– # , εα
βµν – 2 3 .


A
µ
# # :


(12) A
µ=−εµαβγA
αβγ


( # ’ , # # ’ a
µ
:


(13) a
µ
= q
ˆA
µ


# q
ˆ – ’ #. . ! (13)


’ . % q
ˆ #


# ! # , , &


( A
~ A
µ
~ 1/q
ˆ ).


1 " (9) # :


(14) Ωα

µν= 2∆α
[
µν]
= 2iA
α

µν


$ # "


. * # ,


#


∆α
µ
ν #


# , # Γµ
α
ν
( , . 6).






3) % .
1 - #


# ( , . 7):


(15) R
α⋅µβν=∂β∆αµν−∂ν∆αµβ+∆ατβ∆τµν−∆ατν∆τµβ


∆α
µ
ν



1 - &# " - R
:


































(16) R
µν=∂σ∆σµν−∂ν∆σµσ+∆στσ∆τµν−∆στν∆τµσ


. " (9) - #


( , . 8):


(17) R
µν= R
~µν+ R
ˆµν


~


(18) R
µν=∂σΓµσν−∂νΓµσσ+ΓτσσΓµτν−ΓτσνΓµτσ


(19) R
ˆ
µ
ν= i

~
σA
σ

µν− A
τ

σµA
σ

τν


# #


~


4# R
µ
ν – - ; R
ˆ
µ
ν –


- ,


( ). .


∇~
α


# (# Γµ
α
ν
).


(11) ,


(20) A
τ⋅σµA
σ⋅τν=−2(A
µA
ν− g
µνA
αA
α)


!


. (17), (18), (19) (20) -


, #:


~


(21) R
(µν) = R
µν+ 2(A
µA
ν− g
µνA
αA
α)


(22) R
[
µν]
= i
∇~
σA
σ

µν


% # (21) (22), -


# ,


.


, - F
µ
ν, # -


# :


(23) R
µ
ν= R
(
µν)
+ iF
µ
ν


(24) F
µ
ν=∇~
σA
σ

µν



1 F
µ
ν , #


F
µν
:


(25) F
µ
ν= 1
εµ
ναβF
αβ


2


* (24) (11), & &#, # - (25) :


(26) F
µν
=∂µ
A
ν
−∂ν
A
µ

, # " ’ .


. (13) (26) " ’ f
µ
ν


# # #


- :


(27) f
µν
=∂µ
a
ν
−∂ν
a
µ
= q
ˆF
µν

. - (21)


# :


(28) R
= g
µνR
(µν) = R
~ − 6 A
αA
α


# R
~ = R
~
µ
⋅µ
– .


1 , # ’ , # #


& ’ . * ’ ’


( ), "


’ – - .


A
µ
# -


F
µ
ν & ’ a
µ


" f
µ
ν, & & ’ .




4.
’ $ !"( %’ #$"# #


4 , # -


, ,


:


(29) δ LG
− g d
4
x
= 0


# LG
– # . 2 , - , # ,


(29). 2 LG
, ( ! ,


- .


* & ’- ( , . 9-10)


- :


(30.1) Rc


(30.2) Rc
R
µν
R
αβ


(30.3) Rc


(30.4) Rc
(4) ≡δα⋅β⋅γ⋅λ⋅µνστR
µνR
αβR
στR
γλ


* " & - #


#, , " & #


. & "& & - (30) # # . * Rc
(1)
(30.1) # R
. (28) (13)


:


(31) Rc
(1) = R
= R
~ −6A
αA
α= R
~ − q
ˆ62 a
αa
α


$ Rc
(2)
(30.2) δα

β

µν &


# - ,










(22)


(24)


’ !


R
[
µν]
= iF
µν.



!, (25) (27), &# :



(32) Rc
(2)
f
αβ
f
α
β q
ˆ
































& (31) (32) #,


- Rc
(1)


Rc
(2)
# &#


#


#


. $


R
~
, #


&#


( ! , #


" f
αβ
f
α
β,



. 1



# & # & & - Rc
(1)
Rc
(2)
, " !


# .


3 LG


. (§ 2). . ’ #


# L
2
(R
) , # :


(33) L
2
=
(R
− R
0
)2
= R
2
− 2R
0
R
+ R
0
2


# R
0
– . 2 LG
L
2


&


- :


(34) L
G
= L
2 (R
n
Rc
(n
) )=Rc
(2) −2R
0Rc
(1) + R
02


$ (34) # # & " #


(33). * R
0
, &# LG
,


# ,


. . " (31) (32) #


#:


(35) L
G
=− R
0
1q
ˆ2 f
αβf
αβ+ R
~ − q
ˆ62 a
αa
α− R
20


. ’ ,


&#:


(36) q
ˆ = 8
π


κR
0


(37) Λ= R
0


4


# Λ – (Λ ~ 10−56
−2
), κ – ( ! . .


" ! (36) # LG
! #:


(38) LG
=−(f
αβ
f
αβ
+ 6R
0
a
α
a
α
)+ R
~
− 1
R
0


2

















































, # # ’


R
0
. ,#


, ! (37), R
0


#


(38) .




5.
)"#



(29)


(34)


,


#


-


,


’ ,


&


&


.


. " (38)


(29) #:



( # #


(39) δ −(f
αβf
αβ + 6R
0 a
αa
α)+ R
~ − 1 R
0 − g d
4 x
= 0


2


~ = g


# R


(40)


(41)


#


(42)


(43)


G
µ
ν –


.



1




# µν
R
~
µν. $ g
µν
, Γµ
α
ν
a
α
( ) ( (10)):


G
/>µ

∇~σf
µσ+3R
0a
µ= 0


# :


≡ R

ν − 1 g
µ
νR
~


G
µ
ν


2


T
ˆµν ≡ 41π f
a
µa
a
αa
α


( ! , T
ˆ
µ
ν – " ’ - ’ . (40) (41), & , # #


’ # .


#


’ # (41)


- ’ (43), (40) # ( ! , #


. ’ (41) - ,


& .































































,


,


,


’ . *



. $


R
0


&


(40)


(41)


& ,


&


&



.


(41)


#


a
µ
"


f
µν


. $


, #


a
µ
,


, # f
µ
ν,




























.


-


T
ˆµν
(43),


&#


(40)


’ -


:



. %


#




(44) µ
a
µ
























. * #


(41)


(41)


&


#


&#,


.


~


∇µ
a
µ
= 0.



1 T
ˆ
µ
ν # # ’ #


&, ’ - :


(45) ∇µ
T
ˆµν
= ∇~
µ
T
ˆµν
= 0


$ & (45) (40) #


" # 5 , & .


#


R
0
. . (40) :


(46) − R
~ + R
0 = − 3κ4πR
0 a
αa
α = −6A
αA
α


, # " (28) &#,


(47) R
0
= R
~
−6A
α
A
α
= R


1 , R
0
. *


(40) ! (47) !.


(40) (41) # ,


, & ( ),


& #. 3 ,


, . $ :


(48) G
µ


(49) ∇~
σ
f
µσ
+3R
0
a
µ
=ξj
µ


# T
µ
ν = T
ˆ
µ
ν +T
~
µν, T
~
µν – ’ - , T
µ
ν – ’ - , j
µ
– , ξ – (ξ= 4π/ ).


& & #


, & # :


(50) ∇µ
πµ
= ∇~
µ
πµ
= 0


(51) ∇µ
j
µ
= ∇~
µ
j
µ
= 0


# πµ
= µu
µ
( ), j
µ
= ρu
µ
( #), µ –


, ρ – # , u
µ


# (dx
µ
d
τ
). $ µ ρ # ,


" . $ & µ, ρ u
µ
, # .


- #


. * # (49) #


& # (51) 2 #


’ :


(52) ∇µ
a
µ
= ∇~
µ
a
µ
= 0


(


. ( ’ (49), # a
µ
#.


* # # (48)


& # ’ - :


(53) ∇µ
T
µν
= ∇~
µ
T
µν
= 0


. ’ ’ -


:


(54) ∇~µT
~µν = −∇~µT
ˆµν


. " (44) (49) (52) T
~
µν
(54)


! #:


(55) j
µ


(55) #


& .


1 # , #


# . 1 ’ - # ! #,


~ = µu
µ
u
ν
=πµ
u
ν
,


# & # & , T
µ
ν


# µ – #, u
µ
– #


# #. # (55) # ’ #


" & (50) #:


(56) j
µ


+ # # # , # #


# ’- . $ ’ πµ
=µu
µ
= m
δ(x
− x
0
)u
µ
j
µ
=ρu
µ
= q
δ(x
− x
0
)u
µ
, # m
q
– # . $


(56) " , u
β
∇~
β
u
ν
= du
ν
d
τ+ Γα
ν
β
u
α
u
β
, :


du
ν


(57) +Γα
νβ
u
αu
β=
q f u
β


d
τ mc


























































( # # . , # , (57)


& # . $


# # 2 , &


& # &.


1 , # ! # ( ) #


# #


, # # .




6.
*++%!



,


. ! & !


# & # &. $



# # #


’ .


(48)


# (55) (57) #


,


&


&


#


. ,


& ’


(49),


’ - (43).


,# , #


R
0
’ ,


(49), #


. (49)


&


&



. 1 , ’ #


#, .


# (49) #


$ -


# #


( g
00 = −1, g
11 = g
22 = g
33 =1) ’


(58) ∂2
a
µ
−3R
0
a
µ
= 0


(49) #:


# ∂2
=∆− −
2
∂t
2
( ’0 ). (


# #


# -


, # &



# # .


(58) # !, & # & . $


# & # & ’ ! # #:


(59) a
µ
= a
0
µ
sin(kx
−ωt
)


# x
– # # # & . *


’ ω k
!:


(60) ω2
= 2
(k
2
+3R
0
)


# c
– # # &


#. . ! (60) ’ & ! # #,


, # ’ ’ ,


# # :


(61) v

k
= c
1+ 3
k
R
2
0
> c


(62) v
= d
dk
ω
= c
1− 3R
0
ωc
2
2
< c


1 , ’ # , & (58), ’ # # ! # c
(62). % # (61) (62)


( # ). &


# c
. , c


# & , ’ ! # .


$ - ! (58)


#. . (58) ’


’ & # & # :


(64) ϕ = q
e
−αr


r


# ϕ= a
0
(’ ), q
– ’ #, α= 3R
0
= m
γ
c
/ , r
– # # #. - α


(64) « » ’ .


. , &


’ (58) , ,


! ’ & , m
γ
:


3R
0


(63) m
γ
=


c


* ’ # # (62). .


(63)


. (63) ’ .


* ! (37) , &


’ :


(64) 3R
0
~10−55
−2


(65) m
γ
~ 10−65


* # # #


’ . . ’


# # # # :


(66) m
γ
< 3⋅10−60


1 (65) # ’ . ( ,


# ’ , # " # # ’ , # ’ .




7.
,#%-(


. &


’ , ’ ’ & # . *


#&#,


# ’ . $ - -% ( ). * ’ -


.


. # #


, ’ – ( ),


# & -


. / # ’ # & & ’


. ( #


, " ’ –


# - . * ’ #


# &


’ .


$ & & & (


) # & & # # &


# #, # #.


, # ’


, #"


. 3 ’ &


# , ( ’ - ). ) &


’ # , "


’ # ’ - ’ . $ & &


. * , # " & &


’ , # !


2 . $ &, # , , ( ! ( ).


. ’ , " ’ ,


. * ’


, . * # &#


’ .


$ , #


, # & &


& ! .


_____________________








"



1. 0 - -% :


∆αµν = Γµαν + K
α⋅µν



K
αµν = −K
µαν


2. ." % :


σ
=∂µ
g
, # g
= det g
µ
ν


Γµσ

2g


3. $ # :


Ωαµν = ∆αµν − ∆ανµ = K
αµν − K
ανµ


K
αµν = 1 (Ωαµν − Ωµαν − Ωναµ)


2


4. :


δu
µ = −∆µαβu
αdx
β, δu
µ = ∆αµβu
αdx
β


5. % # :


∇µu
ν = ∂µu
ν + ∆νσµu
σ, ∇~µu
ν = ∂µu
ν + Γσνµu
σ


∇µu
ν = ∂µu
ν − ∆σνµu
σ, ∇~µu
ν = ∂µu
ν − Γνσµu
σ


6. % # # ∆α
µ
ν = Γµ
α
ν
+ iA
α

µν:


A
α⋅µα = A
α⋅(µν) = 0, ∆αµα = Γµαα , ∆α(µν) = Γµαν


∇µu
µ = ∂µu
µ+ ∆µσµu
σ = ∂µu
µ+ Γσµµu
σ


∇µ
T
(µν)
= ∂µ
T
(µν)
+∆µσµ
T
(σν)
+ ∆ν(
σµ
)
T
(µσ)
= ∂µ
T
µν + Γσ
µµ
T
(σν)
+ Γσ
νµ
T
(µσ)


7. 1 - :


(∇µ∇ν −∇ν∇µ)u
λ = R
λ⋅σµνu
σ + Ωσ⋅µν∇σu
λ


R
α⋅βµν = ∂µ∆αβν − ∂ν∆αβµ+ ∆ατµ∆τβν − ∆ατν∆τβµ


Ωα

µν = ∆α
µ
ν − ∆α
ν
µ

8. - - :


R


+∇~ α −∇~νK
α⋅βµ+ K
α⋅τµK
τ⋅βν− K
α⋅τνK
τ⋅βµ


µK
⋅βν


9. 1 2 3 :


εαβγλ
= g
[αβγλ], εαβγλ
=− 1
[αβγλ]



+1, αβγλ - " 0123


[αβγλ
]= −1, αβγλ - " 0123


0, αβγλ #


10. * ’- :


δα⋅β⋅γ⋅ λ⋅µνστ ≡ −εαβγλεµνστ δα⋅β⋅γ⋅µνσ ≡ −εαβγτεµνστ




!"#!&"#



1. Einstein A.,
The Meaning of Relativity, Princeton Univ. Press, Princeton, N.Y, 1950


(* #: (!& ! ).,
. , 2, ., 1955).


2. ).
(!& ! ,
. & #, 1. 1-2, #- «) », ., 1966.


3. E. Schrodinger,
Space-Time Structure, Cambridge University Press, 1960 (* #:


(. 6#, * - , , )7 ,


2000).


4. * *.
".,
* & +.
,.,
1 , #- «) », ., 1973.


5. C. W. Misner, K. S. Thorne, and J. A. Wheeler,
Gravitation, Freeman, San Francisco,


1973 (* #: -.
, , .
. ,
" .
/ ,
/ , #- « », .,


1977).


6. 0.
).
" $ , .
1.
% ,
).
..
2 ,
. : #


, #- «) », ., 1986.


7. E. Cartan,
Lecons sur la Geometrie des Espaces de Riemann, Gauthier-Villars, Paris, 1928 and 1946 (* #: % (., -


, #- /, ., 1960).


8. +. Cartan,
On Manifolds with an Affine Connection and the Theory of General Relativity, translated by A. Magnon and A. Ashtekar (Bibliopolis, Naples, 1986).


9. %.
%.
1 ,
) # -


, #- «+# -..», 2002 .


10. 3. .
- $ ,
0 & # , 7),


1 119. . 3, 1976.


11. Alberto Saa,
Einstein-Cartan theory of gravity revisited, gr-qc/9309027 (1993).


12. Hong-jun Xie and Takeshi Shirafuji,
Dynamical torsion and torsion potential, gr-qc/9603006 (1996).


13. V.C. de Andrade and J.G. Pereira,
Torsion and the Electromagnetic Field, gr-qc/9708051 (1999).


14. Yuyiu Lam
,
Totally Asymmetric Torsion on Riemann-Cartan Manifold, gr-qc/0211009 (2002).

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Единая геометрическая теория классических полей

Слов:5167
Символов:37879
Размер:73.98 Кб.