РефератыМатематикаМеМетод Винера-Хопфа и его приложения в физических задачах

Метод Винера-Хопфа и его приложения в физических задачах

Метод Винера-Хопфа и его приложения в физических задачах.


Демидов Р.А. ,ФТФ, 2105


Введение


Указанный метод подходит для решения интегральных уравнений на полубесконечном промежутке с ядром, зависящим от разности аргументов – речь идет об уравнениях вида


.


Этот метод был предложен в совместной работе Н.Винера и Э.Хопфа в 1931 году, и находит разнообразные применения в теории дифференциальных и интегральных уравнений, а также в их приложениях в физических задачах.


В своей работе я опишу сам метод Винера-Хопфа, а также приведу его применение к решению краевых задач матфизики.


1. Метод



1.1 Случай бесконечного промежутка


Метод Винера-Хопфа основан на специальном виде ядра интегрального уравнения – оно зависит от разности аргументов, а не от самого аргумента. Собственно, для начала рассмотрим уравнение вида


(1)


- это уравнение с бесконечным промежутком и тем же самым ядром. Решение его существует ,если выполняются 2 условия:


,


а также условие сходимости нормы u(x):


.


Эти условия работают при действительных λ. Мы рассмотрим два способа решения этого уравнения – один, использующий свойство свертки напрямую, другой – с помощью резольвенты. Итак,первый
.Заметим, что в случае именно бесконечного промежутка интеграл представляет собой свертку ядра и функции u(x). Вспомнив,что Фурье-образы функций u(x),f(x),g(x) выглядят как, воспользуемся свойством образа свертки двух функций – “образ свертки есть свертка образов”.
Тогда для функций U(k),V(k),F(k) – образов соответствующих функций, получаем алгебраическое уравнение:


(2)



Данное свойство образа свертки доказывается “в лоб”, а именно – домножением равенства (1) на и интегрированием по всей действительной оси:



Делая замену во втором интеграле (x-s)=t, получаем


,


что и требовалось доказать.


Видим, что мы свели исходную задачу к алгебраическому уравнению относительно образа исходной функции u(x). Выражая его через образы ядра и f(x),производя обратное преобразование Фурье, получаем в качестве искомого решения:


=>


=> (3)



Второй
способ: вычисляем резольвенту уравнения как


(4)


В виде Фурье - образов это равенство выглядит так:


,


где G(k) вычисляется как


(5)


V(k) – Фурье-образ исходного ядра v(x) уравнения (1).То есть для решения исходного уравнения необходимо найти функцию g(x),применив обратное преобразование Фурье к (5),и подставить его в (4). Этот способ не требует вычисления каждый раз интегралов для F(k) при смене функции f,она подставляется в самом конце один раз, поэтому такой способ быстрее.


На примере этой задачи мы поняли, как решать уравнение с бесконечным промежутком интегрирования. На этом примере мы будем строить решение уравнения с полубесконечным промежутком – и опишем метод Винера-Хопфа.


1.2 Полубесконечный промежуток


Понятно, что в случае, если интегрирование идет не с -∞, а с 0, переходя к образам, мы не можем воспринимать наш интеграл как свертку – а значит, и не можем написать наше уравнение. Запишем некоторые свойства преобразования Фурье, связанные с полубесконечными промежутками, которые нам понадобятся в дальнейшем. Итак, в случае разбиения функции f (x) на два куска – f+
(x) и f-
(x), (f(x)= f+
(x) + f-
(x) )представляющих собой правый и левый концы следующим образом:



выражения для прямых и обратных преобразований Фурье для них будет выглядеть так:


f+
:
,


при причем здесь - комплексная переменная, и выполняется неравенство Im(k)=τ > τ- .
Причем




Обратное преобразование выглядит так:


,


и здесь мы интегрируем по любой прямой Im(k)=τ > τ-
.


f-
:
При


для прямого преобразования Фурье имеем


,


к здесь та же к.п. ,это верно в области с Im(k)=τ < τ+ .
Обратное преобразование для f-
выглядит аналогично:



Интегрирование идет по той же прямой с Im(k)=τ < τ+


При τ-
< τ+
образ F(k) задаётся уравнением



как раз в полосе τ-
< Im(τ) < τ+ .
При τ-
< 0,τ+
> 0 функция полоса Im(τ)=0 попадает в границы интегрирования, и интеграл можно взять вещественным, выбрав мнимую часть τ нулем.


Применим эти соображения к решению искомого уравнения. (6)


(6)


Разложим неизвестную функцию u(x) на составляющие u+
, u-
:




При подстановке этих функций в уравнение (6) мы получаем два уравнения на каждую часть u(x).Факт существование решения мы примем без доказательств. Мы ищем решения, удовлетворяющие следующим условиям:


,


µ<τ+
.


При их выполнении в полосе µ < Im(k) < τ+
функции u+
,u-
являются аналитическими.


Переходя по формулам преобразования Фурье к уравнению для образов, аналогично проделанному в §1,мы имеем право пользоваться теми же свойствами, по причине именно такого выбора функций u+
,u- .
Итак, получаем:


,


что видно из представления u(x)= u+
(x)+u-
(x), U(k)=U+
(k)+U-
(k) и уравнения (6).Перенося все в левую часть, видим, что


,


если так задать функцию L(k).



Мы подошли к сути метода Винера-Хопфа: путем преобразования Фурье свели наше уравнение к алгебраическому, но уже относительно образов функции. Однако в нашем случае, в отличие от §1,неизвестныхфункций в нем две, и обе нам нужны. Грубо говоря, нам позволено найти решение, но оно не будет однозначным, и данный метод работает лишь для определенного вида функций.Пусть мы нашу функцию L(k) можем представить как частное функций L+
(k),L-
(k),уравнение принимает при этом вид


,


и известно следующее – “плюсовая” часть есть аналитическая функция к.п. в области , “минусовая” часть аналитическая функция в области ,µ <τ+
, а значит, в полосе (которая непуста )существует единственная общая функция U(k), совпадающая с U+
,U-
в соответствующих областях. Если дополнительно задать, что функции L+
,L-
растут не быстрее степенной функции kn
, то функции можем считать определенными, и приравнять правую и левую часть в общем случае многочлену Pn
(k) (это получается, если учесть стремление U+
,U-
к нулю по |к|-> ∞.Теперь у нас неопределенности нет, и в общем виде это выглядит так:


Если степень роста функций L есть единица(растут не быстрее линейной функции),то мы имеем для кусков функции L(k) следующее:


,


и в итоговом решении будет присутствовать произвольная константа C.Приведу пример последнего случая с n=0. Пример.





- интегральное уравнение с полубесконечным промежутком и нулевой f для простоты. Решим его м.В.-Х.


Как видим, мы имеем дело с ядром вида exp(-|x|).Найдем его Фурье-образ, и далее, функцию L(k):




- является аналитической в области -1 < Im(k) < 1. Разложим ее как частное двух так:



При 0 < λ < 0.5 условия одновременной аналитичности выполняются в полосе µ < Im(k) < 1, при λ > 0.5 условия выполняются в полосе 0 < Im(k) < 1. Эти выводы получаются из изучения особых точек функций L+
(k),L-
(k). Далее – обе функции растут на бесконечности к по модулю не быстрее многочленов первой степени. Наш полином в числителе – это константа, полином нулевой степени, иначе не выполняется условие сходимости произведения L+
U+
,L-
U-
.Значит


,


и, применяя обратное преобразование Фурье, находим u+


(x):


,


что верно для Решение в квадратурах найдено, этот интеграл подлежит простому подсчету. На выходе получим:



Как видим, решение получено с точностью до константы.


1.3 В общем виде


Изложим метод Винера-Хопфа в общем виде. Возьмем обобщенное уравнение



и поставим задачу: найти функции Ψ1
, Ψ2
,удовлетворяющие нашему уравнению в полосе ,стремящихся к нулю при .A,B,C – аналитические в нашей полосе функции, для ограничения вырожденного случая A,B не равны в полосе нулю. Идею решения такого уравнения мы в основном уже излагали, здесь она немного расширена. Итак, представляем A/B как частное функций L+
,L-
,


,


причем L+
аналитическая в области Im(k) > τ-
, L-
аналитическая в области Im(k) < τ+
.Подставляя это в уравнение, и приводя к общему знаменателю, получаем:



Теперь, если удается разбить слагаемое, не содержащее Ψ,на два, как


,


что будет верно в некоторой подполосе нашей полосы, и сгруппировать идентичные слагаемые, то получаем:



- это чуть более общее равенство, чем то, что мы получали ранее для частного случая. Как и ранее – из сходимости обоих пси к нулю при стремлении k по модулю к бесконечности, сходимости L+
L-
не быстрее многочлена степени n, а также учитывая, что существует единственная пси в нашей полосе, составленная из Ψ1
, Ψ2
, мы получаем следующие соотношения:



Рn
(k) – многочлен, коэффициенты которого определяются из доп.условий. Далее – решение будет равно обратному преобразованию Фурье от суммы Ψ1
, Ψ2.


Что осталось выяснить, так это саму возможность так раскладывать функции. Приведем нескольку лемм, обосновывающих возможность такой работы с нашими функциями.


Лемма1

:
Пусть образ F(k) аналитический в полосе ,F(k) равномерно стремится к 0 при |k|-> ∞ Тогда в этой полосе возможно разбиение функции F как ,F+
(k) аналитическая в Im(k)>τ-
, F-
(k) аналитическая в Im(k)<τ+
.













Доказательство:

Рассмотрим систему отсчета так, как это изображено на картинке. Посчитаем значение F(k0
) – в точке, лежащей внутри прямоугольного контура abcd.По формуле Коши расписали в интеграл по контуру.Перейдем к пределу A ->∞,и устремим контур к полосе.



Тогда в пределе получаем


,


где эти части есть



Каждая функция задана в своей области, а на их пересечении в нашей полосе мы имеем равенство. Что и требовалось доказать, в общем то. Очевидно, что из их сходимости следует и ограниченность F+
(k),F-
(k) в рассматриваемой полосе.


Лемма2:

Пусть функция Ф(k) является аналитической и не равной нулю в полосе ,причем Ф(k) равномерно стремится к 1 при |k|->∞.Тогда ,где функции Ф+
,Ф-
соответственно аналитические в


и




Доказательство:


Заметим, что для функции выполнены условия леммы1,значит,мы имеем право ее представить суммой F+
, F-
, а Ф – произведением:


,Ф=Ф+
*Ф-
.


Условия на границы по мнимой оси для функций Ф+
,Ф-
сохранятся => лемма доказана.


Теперь сделаем еще одно обобщение – покажем, как в общих чертах работает этот метод для неоднородного уравнения


(7)


Проводя аналогичные рассуждения, разбивая u(x) на две вспомогательные функции, замечаем, что при выполнении условий для модуля



в полосе мы можем переходить к образам функций и мы получим



предварительно разбив F на две. Принимая за функцию L(x) ф-ю


,


аналитическую в стандартной полосе и равномерно стремящуюся к 1 при наше алгебраическое уравнение перепишется как



Далее, точно также разделяем L на две части как


,


И L+
- аналитическая в , L-
- аналитическая в . По аналогии приводя к общему знаменателю, получаем уравнение на U+
,U-
:



При успешном разложении последнего члена как


,


где по все той же аналогии D+
и D-
аналитические в областях соответственно, мы записываем решения в виде


.


При этом мы воспользовались той же сходимостью – L+
,L-
растут не быстрее чем kn
, а значит, для выполнения условий необходим полином в числителе.


Как видим, и эта, неоднородная задача, успешно решилась методом Винера-Хопфа. Как таковой, метод основан на некой аналогии разделения переменных – мы разделяем одну функцию на сумму двух, каждая из которых закрывает свою зону комплексной плоскости, и с каждой половиной работаем отдельно.


Метод мы рассмотрели, поняли, как он работает, теперь рассмотрим его конкретное применение – в краевых задачах математической физики.



2. Применение метода Винера-Хопфа


До этого мы рассматривали наш метод для решения интегральных уравнений, однородных и неоднородных, с специальным ядром. Сейчас же рассмотрим уравнение Лапласа и краевую задачу на нем, тем самым обобщив м. В.-Х. и на дифференциальные уравнения в частных производных.


Итак, задача: в верхней полуплоскости найти гармоническую функцию, удовлетворяющую следующим условиям:



Для этого решим к. задачу на уравнении , ,и перейдем уже в решении к пределу в нуле по каппа.


Разделяя переменные, и применяя метод Фурье, в общем виде находим решение:


,


где f(k) - произвольная функция комплексного параметра k,



Для удовлетворения функции u граничным условиям должны выполняться 2 условия на f(очевидно из представления u):



Решение строится, если L(k) аналитическая в полосе τ-
< Im(k) < τ+
,если при этом τ-
< 0, τ+
> 0. Тогда


,


где L+
аналитическая в верхней полуплоскости τ-
< Im(k), L-
аналитическая в нижней п.п Im(k) < τ+
.Если мы так представили L, несложно убедится в истинности решения


,


где константа определяется как



Эти результаты мы получаем, замыкая контур интегрирования и пользуясь леммами Жордана об интегрировании по верхней/нижней полуплоскости. Убеждаемся, что вид функции L



нам подходит. Подставляя его в предыдущие равенства, получаем


и


,


что решает задачу. Теперь, как мы в самом начале говорили, перейдем к пределу по каппа к нулю и в пределе получаем гармоническую функцию:



вычисляя интеграл, получаем



Дальнейшие вычисления приводят нас к следующему результату:


-


если вводим вспомогательную функцию так, то


,z=x+iy.


Получили ответ задачи.


Вывод


В работе мы рассмотрели метод на примере интегральных уравнений ,и обосновали его правильность. После мы применили его к решению краевой задачи матфизики, используя представления о методе Винера-Хопфа из области специальных интегральных уравнений.


В общем то, мы применили небанальный переход, когда устремляли каппа к 0,и получали гармоническое уравнение.


В общем и целом, метод Винера-Хопфа, хоть и является достаточно узким методом, направленным на решение конкретного И.У. с определенным ядром, позволяет решать многие математические задачи помимо своего прямого предназначения.


Список использованной литературы


1. Б.Нобл. “Применение Метода Винера-Хопфа для решения дифференциальных уравнений в частных производных.”


2. Свешников, Тихонов, “Теория функций комплексного переменного.”

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Метод Винера-Хопфа и его приложения в физических задачах

Слов:2180
Символов:17371
Размер:33.93 Кб.